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Abstract
The problem of the energy levels and electronic wavefunctions in quantum
dots is studied in the parabolic coordinates system. A conventional effective
mass Hamiltonian is written. For an infinite potential barrier, it is related to
the more general problem of finding the resonance modes in a cavity. The
problem is found to be separable for a biconvex-shaped cavity or quantum dot
with an infinite potential barrier. This first shape of quantum dot corresponds
to the intersection of two orthogonal confocal parabolas. Then plano-convex
lens-shaped cavities or quantum dots are studied. This problem is no more
separable in the parabolic coordinates but using symmetry properties, we
show that the exact solutions of the problem are simple combinations of
the previous solutions. The same approach is used for spherical coordinates
and hemispherical quantum dots. It is finally shown that convex lens-shaped
quantum dots give a good description of self-organized InAs quantum dots
grown on InP.

PACS numbers: 71.15.m, 73.20.Dx

1. Introduction

Recent research developments were devoted to quantum dots semiconductor heterostructures.
Their properties improve optoelectronic device performances as compared to semiconductor
quantum wells [1–3]. The theoretical study of the electronic properties of quantum dots
(QDs) can be performed with various theoretical schemes such as first-principles calculations,
semi-empirical calculations (pseudopotential, tight binding) effective-mass or multiband k · p
approximations. One-band effective mass models have proved to be very useful in many cases
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for QDs grown either on GaAs or InP substrates [4–8]. Effective mass calculations for highly
symmetric shapes (spherical QDs, cylindrical QDs) give first indications about the influence
of three-dimensional (3D) quantum confinement [1, 2]. Ellipsoidal [9] or elliptic cylindrical
QDs [10] have also been studied. There is however a lack of simple model in the case of
asymmetric quantum dots. Indeed in many cases pyramids, truncated pyramids or lenses
provide better spatial descriptions of the quantum dot geometries than spheres, ellipsoids or
even parallelepipeds. Lens-shaped quantum dots have been simulated by various methods,
such as finite differences, finite elements [7], transfer matrix [11] or conformal mapping
associated with Rayleigh–Schrödinger perturbation theory [12]. However, up to now, no
analytical solutions have been proposed. In this work for an infinite potential barrier, we use
parabolic coordinates to get separable solutions related to solutions of Laplace and Helmholtz
equations [13–16]. We show that various cavities or quantum dots shapes may be studied
with parabolic coordinates using analytical solutions. These solutions are either confluent
hypergeometric functions of the first kind or in some particular cases Bessel functions of the
first kind. They may be easily computed using integral representations [15] or commercial
mathematical packages [17]. Self-organized InAs quantum dots grown on InP with a lens
shape are then conveniently studied [7, 18, 19]. A comparison to hemispherical quantum dots
is also performed.

2. Biconvex-shaped quantum dot

2.1. Geometrical description of the dot

The parabolic set of unit less coordinates (u, v, θ ) (0 � u � ∞, 0 � v � ∞ and 0 � θ � 2π )
is defined by a transformation of Cartesian coordinates :

x = auv cos(θ) y = auv sin(θ) z = a(u2 − v2)/2.

Figure 1(a) is a projection of the coordinate surfaces on the (y, z) plane. A particular volume
is represented by the boundaries which are two parabolas (u = U0) and (v = V0) rotated
around the z axis (0 � θ � 2π ). In the particular case where U0 = V0 = 1, the surfaces are
orthogonal confocal coordinate surfaces, which can be associated with the physical boundaries
of a disc-shaped dot (or a kind of ‘flying saucer’) (figure 1(b)). The dot is represented by
its height T = a and its diameter D = 2a. The volume of the disc is equal to πa3/2.
Figure 1(c) corresponds to half the volume of the same disc (πa3/4) and to a lens-like shape
with height T = a/2 and diameter D = 2a. The symmetry group is D∞h in the first case and
only C∞v in the last case. In the last case, a symmetry plane perpendicular to the rotation
axis is removed. The D∞h is the direct product of C∞v and Ci : the solutions in the second
case may be deduced from the solutions in the first case. When electronic properties are
considered [4–6], the quantum number n coming from the rotational symmetry dependence
of the solution (einθ ) is used. It is usually associated with the labels S (n = 0), P (n = 1),
D (n = 2) . . . for the C∞v or D∞h groups.

2.2. Effective mass Hamiltonian

In order to construct the conventional effective mass Hamiltonian, the usual symmetrization
of the expression �p2

2m(�r) yields Ĥ = 1
2 p̂ 1

m(�r) p̂ + V (�r) with p̂ = −ih̄ �∇ [4, 17]. The parabolic
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Figure 1. (a) Projection of the parabolic coordinate surfaces in the (y, z) plane. A particular
volume is obtained by the boundaries which are two parabolas (u = U0) and (v = V0) rotated
around the z axis (0 � θ � 2π ). If two orthogonal confocal parabolas are used (U0 = V0) a
symmetrical disc-shaped volume is obtained (figure 1(b)). (b) Disc-shaped quantum dot obtained
by the intersection of two orthogonal confocal parabolas (projection in the ( y, z) plane). A mesh
is used for drawing the external surface. (c) Lens-shaped quantum dot obtained by taking half the
volume (z > 0) of the disc-shaped quantum dot (figure 1(b)). A mesh is used for drawing the
external surface.

metric is defined by three coefficients: h11 = h22 = a(u2 + v2)1/2 and h33 = auv [13]. The
gradient vector is

�∇� =
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When considering the geometry of the quantum dot (figure 1), the effective mass and the
potential depend on (u, v) but not on θ (in the case of a finite potential barrier).

H = −h̄2

2
�∇ 1

m(�r)
�∇ + V (�r) = − h̄2

2a2(u2 + v2)

[
1

u

∂

∂u

u

m(u,v)

∂

∂u
+

∂

∂v

v

m(u,v)

∂

∂v

]

− h̄2

2a2u2v2m(u,v)

∂2

∂θ2
+ V (u, v).

The Hamiltonian is separable in (u, v) and θ and �(u, v, θ) = χ(u, v) einθ are general solutions
of the problem (C∞v or D∞h symmetry groups). No further separation is possible because of
the complex dependence of the potential V (u, v) associated with the boundary conditions.

2.3. Analytical solutions

In the case of an infinite potential barrier, V (u, v) is set equal to zero and the effective mass
is associated with the inner dot mass and is constant. The Schrödinger equation in this case is
the Helmholtz equation [13]. We will consider here the problem of the quantum disc explicitly
although this problem is in fact related to the more general problem of the resonance modes in
a cavity. This is of interest for various problems in mechanics, acoustics or electromagnetism
[14]. The Hamiltonian is separable in u, v and θ coordinates and the wavefunction is a product
of functions of independent variables �(u, v, θ) = f (u)g(v) einθ . To simplify the analysis,
energy variables are chosen to avoid problems related to the physical units: E = Er/E∞where
E∞ = h̄2

2mT 2 , E is the dimensionless energy and Er is the real energy. The f and g functions
are solutions of two coupled differential equations with a separation constant C:

u2 d2f

du2
+ u

df

du
+ (Eu4 − Cu2 − n2)f = 0

and

v2 d2g

dv2
+ v

dg

dv
+ (Ev4 + Cv2 − n2)g = 0.

Solutions of these equations may be deduced from the literature [15], they include
confluent hypergeometric functions φ:

f (u) = NF(u,C,E, n) = N e−i
√

Eu2/2(i
√

Eu2)n/2φ

( −iC

4
√

E
+

n + 1

2
, n + 1, i

√
Eu2

)

g(v) = NF(v,−C,E, n) where N is a normalization constant.
The boundary conditions are then F(1, C,E, n) = 0 and F(1,−C,E, n) = 0.
If we consider first the case C = 0, the two conditions reduce to a single condition

F(1, 0, E, n) = 0. More, the solutions of the problem contain simple Bessel functions of
complex variable z using the expression:

Jn/2(z) = e−iz

�
(

n
2 + 1

) ( z

2

)n/2
φ

(
n + 1

2
, n + 1, i2z

)
.

The solutions correspond to the zeros of Jn/2(
√

E/2). Figure 2 is a representation of
the lowest energy electronic wavefunctions for n = 0, 1Se and n = 1, 1Pe. The energies are
respectively E = 23.1 and E = 39.5 in reduced energy units. It is important to note that these
functions are even with respect to the plane symmetry z → −z. This is a property common
to all the solutions with C = 0. Indeed, the z = 0 surface is defined by u = v. Odd solutions
should then vanish for any value of u = v between 0 and 1. This condition cannot be fulfilled
by the product of Bessel functions.
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Figure 2. (a) Representation of the (u, v) mesh used for drawing the electronic wavefunctions
(projection in the (y, z) plane). The surface is limited by the external boundary of the quantum
disc. (b) Cross section of the fundamental state 1Se wavefunction (( y, z) plane). A vertical scale
is added and corresponds to the wavefunction amplitude. The separation constant C is equal to 0.
(c) Cross section of the first excited state 1Pe wavefunction (( y, z) plane). A vertical scale is added
and corresponds to the wavefunction amplitude. The separation constant C is equal to 0.

We consider now the case C �= 0. The solutions correspond to putting
φ
( −iC

4
√

E
+ n+1

2 , n + 1, i
√

E
)

and φ
(

iC
4
√

E
+ n+1

2 , n + 1, i
√

E
)

simultaneously equal to zero. The
numerical solution is then obtained by finding in the (C, E) plane, the intersection of the
E(C) curves corresponding to the minima. Figure 3 is a representation (limited to C � 0)
of this procedure in the case n = 0. The lowest energy corresponds to E = 62.0 and
C = 13.5. The same energy would have been obtained by considering C = −13.5. It
means that all the solutions with C �= 0 are twice degenerate. Figures 4(a) and (b) are
representations of the two wavefunctions χ(u, v) = F(u,C,E, 0)∗F(v,−C,E, 0) and
χ(u, v) = F(u,−C,E, 0)∗F(v, C,E, 0) corresponding to E = 62.0 and C = 13.5.
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Figure 3. Representation of the E(C) curves for n = 0 and limited to C � 0 (C is the separation
constant and E is the energy). The eigenvalues are obtained by the intersections of two E(C) curves.
The ground-state E0,0 corresponds to the intersection E = 23.1 and C = 0. Two states with C �=
0 are obtained by the intersections of the E(C) curves: E1, C1 = 62.0 with C1 = 13.5 and E2,C2 =
118.6 with C2 = 40.0. The next state is E3,0 = 121.9.

The constant C is related to the symmetries of the wavefunctions. The quantum number
n is associated, in the case n �= 0, with the breaking of the rotational symmetry around the z

axis. In the same way, in the case C �= 0, the plane symmetry z → −z is broken (figures 4(a)
and (b)). It is however possible to classify the wavefunctions according to the IR of the D∞h

symmetry group by taking into account combinations of the degenerate solutions (figures 4(c)
and (d )):

χ(u, v) = F(u,C,E, 0)∗F(v,−C,E, 0) ± F(u,−C,E, 0)∗F(v, C,E, 0).

The plus sign corresponds to the even 2Se state (figure 4(c)) while the minus sign corresponds
to the odd 1S0 state (figure 4(d )). These analytical solutions are no more separable solutions
of the Schrödinger (Helmholtz) equation but provide a better description of the problem from
the symmetry point of view.

3. Lens-shaped quantum dot

3.1. Analytical solutions

We will now consider the lens-shaped quantum dots (plano-convex lens) which correspond
to half the volume of the previous geometrical object. The problem is not separable in the
parabolic coordinates for the lens-shaped quantum dots because the boundary conditions on
the horizontal plane (z = 0) strongly mix both coordinates (u = v). In relation to the infinite
potential barrier now existing on the z = 0 plane, it is however straightforward to deduce that
the solutions of this problem are the odd solutions of the previous one. The reduction of the
thickness T by a factor of 2 has an important effect on the energy E∞ which is increased by a
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Figure 4. (a), (b) Cross sections of the two degenerate wavefunctions with E1,C1 = 62.0 (C1 = 13.5)
in the (y), (z) plane (n = 0). A vertical scale is added and corresponds to the wavefunction amplitude.
(c), (d ) Cross sections of the even 2Se and odd 1S0 wavefunctions which are combinations of the
degenerate wavefunctions with E1,C1 = 62.0 (C1 = 13.5) (n = 0). A vertical scale is added and
corresponds to the wavefunction amplitude.

factor of 4
(
E∞ = h̄2

2mT 2

)
. For the 1S ground state (former 1S0 state), we find then E = 15.5

and C = 13.5. The first excited state is the 1P state with E = 21.9 and C = 21.7. In order of
increasing reduced energies, the next two states are the 1D (n = 2, E = 29.0 and C = 29.7)
and 2S (n = 0, E = 29.6 and C = 40.0) states. The confined energies Er in the lens are higher
than the ones in the disc.

3.2. Comparison to other geometrical objects with analytical solutions

It is important to make a comparison to the case of the quantum well for two reasons. First,
quantum wells are now widely used for optoelectronic devices [20] and quantum dots may
offer improved performances for these applications [1–3]. Second, quantum wells correspond
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Figure 5. Cross sections ((y, z) plane) of an hemispherical quantum dot (a), a lens-shaped quantum
dot (b) and a quantum well (c) with the same height T. D is the diameter of the lens-shaped
quantum dot.

to a quantum confinement along only the z direction and may be considered as a limit where
the diameter D tends to infinity (figure 5). For the infinite potential barrier case, the energy
levels in the quantum wells with equivalent thickness to the quantum dot are quantified along
z by the relation E = (nπ)2 where n = 1, 2, 3, . . . [20]. These energies correspond the edge
of two-dimensional densities of states associated with the free motion in the (x, y) plane. The
ground-state energy of the quantum well is equal to π2. For the lens-shaped quantum dot,
the energy is of the ground state is equal to E = 15.5. The increase from a value of π2 for
the quantum well to 15.5 for the quantum dots may be attributed to the quantum confinement
in the (x, y) plane. It should be pointed out that there is a plane symmetry z → −z in the
case of the quantum well but not for the lens-shaped quantum well. We may therefore predict
that the behaviour of the two systems will be different with respect to a physical effect with
vectorial symmetry along the z axis. This is the case of the quantum confined Stark effect
(QCSE) where an applied field along z axis induces an energy level shift and modifies the
matrix element of the optical absorption. A quadratic dependence of the ground-state energy
shift is found in a quantum well in the case of the QCSE, where for the reason of symmetry,
the linear term vanishes [20]. In comparison, a linear (stronger) dependence is theoretically
expected for the lens-shaped quantum dots.

The case of the hemispherical quantum dot may also be analysed for comparison purposes
(figure 5). The volume of this dot 2πT 3/3 is smaller than the volume of the lens-shaped dot
2πT 3 for the same height. Additional confinement may be expected in the horizontal plane
in the hemispherical case. In order to obtain the analytical solutions for the hemispherical
quantum dot problem, we may employ the same method as in sections 2 and 3.1. The analytical
solutions for the spherical quantum dots are fully separable in the spherical coordinates, the
electronic wavefunctions are then simple products of spherical harmonics (with quantum
numbers 	 and m) and radial Bessel functions of half integral order (	 = 1/2) vanishing on
the boundary r = R (where R is the radius of the sphere) [1, 15]. The analytical solutions
for the hemispherical quantum dot are the odd solutions of the spherical case when the plane
symmetry z → −z is considered. The electronic ground state for the hemispherical quantum
dot is defined by the spherical harmonic with 	 = 1, m = 0 and the first zero of the Bessel
function with order equal to 3/2. The ground-state reduced energy is E = 20.2 for a radius
equal to the thickness of the quantum well and the lens-shaped quantum dot. The first
excited state is degenerated (spherical harmonics with 	 = 2, m = ±1) with energy equal to
E = 33.2, larger than the excited state energy of the lens-shaped dot E = 21.9 (section 3.1).
For quantum objects of thickness T, the more the surface in the (x, y) plane is reduced, the
more the confinement is increased.

3.3. Application in the case of InAs quantum dots grown on InP

An example of a lens-shaped geometry may be found for InAs quantum dots grown on InP [19].
These quantum dots are used for laser applications at the telecommunication wavelength of
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1.55 µm [21] and present superior performances than devices realized on quantum wells [22].
For InAs quantum dots grown on InP (100) substrate the diameter and height are respectively
equal to about 40 nm and 8 nm [19]. They can be well described by the geometry imposed by
the parabolic coordinates (figure 1(a)) where the ratio between diameter and height is equal
to 4. In addition, the facets of the dots show a tilt angle close to the value of 45◦ (figure 1(c)).
Photoluminescence spectroscopy was used to study the optical transitions in these dots [7].
A ground-state optical transition energy of about 650 meV (or E = 1092 in reduced units)
was measured at room temperature. Taking into account that the fundamental energy gap of
the strained InAs material is E = 722 at room temperature [7], we deduce that the effect of
quantum confinement on both the electrons and holes is equal to E = 370. The transition
energy is calculated in our model by multiplying 15.5 by 1/µ where µ is the reduced electron–
hole mass. µ is then found equal to 0.042 which is in reasonable agreement with the effective
masses usually used [7]. The first excited optical transition energy between 1P states is then
calculated to be equal to 740 meV (E = 1243). The model used in this work is simple, light
in computation task and includes geometrical symmetries, which are highly important for
physical applications. In addition computed and experimental values of the optical transition
energy are in reasonable agreement.

4. Conclusion

The problem of electronic energy levels and wavefunctions in quantum dots was studied with
parabolic coordinates. The conventional effective mass Hamiltonian and Schrödinger equation
were derived. It was shown that the problem is fully separable for a disc shape in the case of
an infinite potential barrier. The solutions are then directly related to the resonance modes of
a cavity associated with the Helmholtz equation. Exact solutions for the lens-shaped quantum
dots were proposed. This geometry is realistic and is important for numerous applications
when orientational symmetries are involved. It is compared to the limiting cases of the
quantum well and of the hemispherical quantum dot. It is also applied to self-organized InAs
quantum dots grown on InP. Further works will focus on the applications of the analytical
solutions found for the lens-shaped quantum dots. Various physical effects such as Stark
shifts, excitonic effect, interband or intraband optical absorption will then be studied [18].
The method described in this paper will also be extended to other sets of special coordinates.
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